Learn About Algebraic Identities

By MathHelloKitty

If you happen to be viewing the article Learn About Algebraic Identities? on the website Math Hello Kitty, there are a couple of convenient ways for you to navigate through the content. You have the option to simply scroll down and leisurely read each section at your own pace. Alternatively, if you’re in a rush or looking for specific information, you can swiftly click on the table of contents provided. This will instantly direct you to the exact section that contains the information you need most urgently.

Algebra is one of the most important chapters of basic mathematics. Students get to know about Algebraic Identities in the lower grades, at the high school level, and then move up to the upper grades and learn higher levels of algebraic Identities. Algebraic identification is a broad topic and is useful in all areas of a student’s life. An algebraic identifier is an algebraic equation that applies to all variable values ​​in it. An algebraic equation is a mathematical expression consisting of numbers, variables (unknown values), and mathematical functions (addition, subtraction, multiplication, division, etc.)  they are mainly used to find elements of polynomials.

Everything About Algebraic Identities

If the equation is true for all the values ​​of the variables in it, it is called an identifier. An algebraic identifier is an equation where the value of the left-hand side of the equation is equal to the value of the right-hand side of the equation for all variable values. We have several standard identifiers that we can use in different branches of mathematics. All standard Identities are obtained by the Binomial statement.

READ  Difference between Area and Volume

An algebraic equation that refers to all the values ​​of a variable in it is called an algebraic identifier. It is also used to factor polynomials. Thus, algebraic identifiers are used in the calculation of algebraic expressions and in the solution of various polynomials. You must have learned about some Algebraic Identities in the younger classes. In this class, you will revise those concepts and enhance your learning.

What are Algebraic Identities for Class 8?

  • Algebraic identities are algebraic equations which are always true for every value of variables in them.

  • Algebraic identities have their application in the factorization of polynomials.

  • They contain variables and constants on both sides of the equation.

  • In an algebraic identity, the left-side of the equation is equal to the right-side of the equation.

  • For example, (a+b)2 = a2+2ab+b2 , which is true for all the values of and b.

(Image will be uploaded soon)

 

Methods to Verify Algebraic Identities 

(Image will be updated soon)

 

Using Substitution Method

  • Substitution generally means putting numbers or values in the place of variables or letters.

  • In the substitution method, an arithmetic operation is performed by substituting the values for the variables.

  • For example, when we have x-2=4

When we substitute x= 6, 

On the Right-hand side,

4

On the left-hand-side,

x-2 = 6 – 2 = 4

Here, Right hand side = Left hand side which means (x-2) is an identity.

Suppose, (a+3) (a-3) = (a2-9) 

Substituting a= 1

On the Right- hand side,

(a2-9) = (1-9) = -8

On the Left- hand side,

(a+3) (a-3) = (1+3) (1-3) = (4) (-2) = -8

Here, Right hand side = Left hand side which means that (a+3) (a-3) is an identity.

READ  At a certain company, loan agents are paid based on the number of loans they close in a day. Based on company records, the number of loans X that a randomly selected loan agent closes on a randomly selected day has the probability distribution below.

Using Activity Method

  • In this method, the algebraic identity is verified geometrically by taking different values of a x and y.

  • In the activity method, the identities are verified by cutting and pasting paper.

  • To verify an identity using this method, you need to have a basic knowledge of Geometry.

The standard identities class 8 are derived from the Binomial Theorem. The table below consists of some Standard identities in maths class 8.

Identities Class 8 –

Identity I

(a+b)2 = a2+2ab+b2

Identity II

(a-b)2 = a2- 2ab+b2

Identity III

a2-b2= (a+b) (a-b)

Identity IV

(x+a) (x+b) = x2+(a+b) x+ab

Identity V

(a+b+c)2= a2+b2+c2+ 2ab+2bc+2ca

Identity VI

(a+b)3= a3+b3+3ab(a+b)

Identity VII

(a-b)3= a3 -b3-3ab(a-b)

Identity VIII

a3 +b3+c3-3abc

Now, you Might Think What a Binomial Theorem is!

  • In algebra, the Binomial Theorem is defined as a way of expanding a binomial expression raised to a large power which might be troublesome.

  • A polynomial equation with just two terms generally having a plus or a minus sign in between is known as a Binomial expression.

A Small Explanation for the Above Algebraic Identities for Class 8

For example, let us take one of the basic identities,

(a+b)2 = a2+2ab+b2, which holds for all the values of a and b.

  • An identity holds true for all the values of a and b.

  • We can possibly substitute one instance of one side of the equality with its other side.

  • In simple words, (a+b)2 can be replaced by a2+2ab+b2 and vice versa.

  • These can be used as shortcuts which make manipulating algebra easier.

 

Factoring Identities

The identities listed below in the table are factoring formulas for identities of algebraic expressions class 8.

  x2-y2 =

(x+y) (x-y)

  x3-y3 =

(x-y) (x2+xy+ y2)

  x3 +y3 =

(x+y) (x2 -xy+ y2)

  x4-y4 =

(x2-y2) (x2 + y2)

 

Three – Variable Identities –

By manipulation of the various discussed identities

entities of algebraic expressions class 8 we get these three- variable identities.

(x+y) (x+z) (y+z) = 

(x+y+z) (xy+yz+xz)-xyz

  x2 +y2+z2 =

(x+y+z)2- 2(xy+yz+xz)

    x3 +y3+z3  =

(x+y+z)(x2 + y2 +z2 -xy-xz-yz)

READ  Quotient Meaning

 

Important Algebraic Expressions and Identities Class 8 Formula –

The Four Basic Identities in Maths Class 8 have Been Listed Below

Identity I

(a+b)2 = a2+2ab+b2

Identity II

(a-b)2 = a2- 2ab+b2

Identity III

a2-b2= (a+b) (a-b)

Identity IV

(x+a) (x+b) = x2+(a+b) x+ab

Questions to be Solved on Identities Class 8

Question 1) Find the product of (x-1) (x-1)

Solution) We need to find the product (x-1) (x-1),

(x-1) (x-1) can also be written as (x-1)2.

We know the formula for (x-1)2, expand it

(a-b)2 = a2- 2ab+b2 where a= x, b=1

(x-1)2 = x2- 2x+1

Therefore, the product of (x-1) (x-1) is x2- 2x+1 

Question 2) Find the product of (x+1) (x+1) as well as the value of it using x = 2.

Solution) We need to find the product (x+1) (x+1),

(x+1) (x+1) can also be written as (x+1)2.

We know the formula for (x+1)2, expand it

(a+b)2 = a2+ 2ab+b2 where a= x, b=1

(x+1)2 = x2+ 2x+1

Putting the value of x = 2 in equation 1,

(2)2+ 2(2) +1 = 9

Therefore, the product of (x+1) (x+1) is x2+ 2x+1 and the value of the expression is 9.

 

Question 3) Separate the constants and the variables from the given question.

-4, 4+x, 3x+4y, -5, 4.5y, 3y2+z

Solution) Variables are the ones which include any letter such as x, y, z etc along with the numbers.

In the given question, 

Constants = -4, -5

Variables = 3x+4y, 4+x, 4.5y, 3y2+z

 

Question 4) Find the value of \[\frac{{{x^2} – 1}}{5}\],at x = -1.

Solution) At x = -1,  \[x =  – 1,\frac{{{x^2} – 1}}{5}\]

                                     = \[\frac{{{(-1)^2} – 1}}{5}\]

                                      = 0

Question 5) Find the value of x2+y2 – 10 at x=0 and y=0?

Solution) At x= 0 and y = 0,

x2+y2 – 10 = (0)2+(0)2 – 10 

= -10

Question 6) Solve the following (x+2)2 using the concept of identities.

Solution) According to the identities and algebraic expression class 8,

We know the formula,

(a+b)2 = a2+2ab+b2

Where, a= x, b= 2

Let’s expand the given (x+2)2,

Therefore, (x+2)2 = x2+4x+4 is the solution.

Thank you so much for taking the time to read the article titled Learn About Algebraic Identities written by Math Hello Kitty. Your support means a lot to us! We are glad that you found this article useful. If you have any feedback or thoughts, we would love to hear from you. Don’t forget to leave a comment and review on our website to help introduce it to others. Once again, we sincerely appreciate your support and thank you for being a valued reader!

Source: Math Hello Kitty
Categories: Math