Meaning, Types of Inductors, Uses and FAQs

By MathHelloKitty

If you happen to be viewing the article Meaning, Types of Inductors, Uses and FAQs? on the website Math Hello Kitty, there are a couple of convenient ways for you to navigate through the content. You have the option to simply scroll down and leisurely read each section at your own pace. Alternatively, if you’re in a rush or looking for specific information, you can swiftly click on the table of contents provided. This will instantly direct you to the exact section that contains the information you need most urgently.

On passing a changing current through a closed-current carrying conductor or an inductor, a magnetic field generates around it. 

In simple terms, this changing current produces an additional current, i.e., an induced current. 

This induced current creates an EMF that opposes the further change in the current.  This opposing ability is what we call inductance. 

When the inductance happens within the same coil, it is self-inductance. 

However, if the current flow in the primary coil shows the inductance effect in the secondary coil, we call it mutual inductance.

This page discusses in-depth the types of inductance with their uses.

Electric Induction

When a current establishes in a closed conducting loop, it generates a magnetic field. 

Further, this magnetic field generates flux (magnetic induction) in an area of the closed-loop. 

So, when the current varies with time, the flux via the loop also changes. 

Furthermore, this variation generates an induced EMF in the loop. We call this phenomenon self-induction.

Here, we note that the magnetic field at any point varies directly with the current. The magnetic flux in an enclosed area of the conductor is given as;                 

READ  Electrostatic Conductor - Coulomb’s Law of Electrostatics

Φ  ∝ i  =>   Φ = L i

So, the more is the change in the current, the more in the flux generation. 

Therefore, removing the sign of proportionality constant, we get “L,” which is the coefficient of self-inductance or simply self-inductance of the loop.                        

The inductance in the coil (Fig.1) depends on the following parameters:

  1. The number of turns, 

  2. Area of cross-section, and 

  3. The nature of the material of the core on which the coil is wrapped.

Inductance Definition

If i =1,  

Φ = L x i  

Or

L =    Φ

We say that the coefficient of self-inductance is numerically equal to the amount of magnetic flux associated with the coil when unit current flows through it.

From Faraday’s law of induction, any change in the magnetic field induces an emf, which is given by,

E =  –  dΦ

Thank you so much for taking the time to read the article titled Meaning, Types of Inductors, Uses and FAQs written by Math Hello Kitty. Your support means a lot to us! We are glad that you found this article useful. If you have any feedback or thoughts, we would love to hear from you. Don’t forget to leave a comment and review on our website to help introduce it to others. Once again, we sincerely appreciate your support and thank you for being a valued reader!

Source: Math Hello Kitty
Categories: Physics